Unstable Motivic Homotopy

David Zhu

June 25, 2025

David Zhu

Unstable Motivic Homotopy

June 25, 2025

-

< □ ▶

a

< ∃ >

Ð,

1/47

 $\mathcal{O}\mathcal{Q}(\mathcal{P})$

2 Sheaves

5 The Spheres

э.

< 4 ▶

< □ ▶

< ∃ >

Ð,

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

1 Introduction

2 Sheaves

3 \mathbb{A}^1 -Locality

4 Motivic Spaces

5 The Spheres

▲ 『□ ▶

•

< □ ▶

∃ ► < **∃** ►

5900

Ð,

Goal

Design a homotopy theory for schemes.

We will be working with Sm/S, the category of smooth schemes of finite type over S, a Noetherian scheme of finite dimension.

S: k

< □ ▶

<! ₹ ₹ > ... ₹

 $\mathcal{A} \mathcal{A} \mathcal{A}$

What do we mean by a "homotopy theory"?

A "homotopy theory" could be any one of the two structures

A simplicial model category (Morel-Voevodsky) Zate 1990s

2 An ∞ -category (What cool kids do these days)

∢ ⊒ ▶

There are multiple ways to set up motivic spaces (model categorical and ∞ -categorical), but all of them produce the same homotopy theory. We will use the ∞ -categorical version following [1].

Definition

The ∞ -category of **motivic spaces** Spc(S) is

 $Spc(S) = Shv_{Nis}(Sm/S) \cap PShv_{\mathbb{A}^1}(Sm/S) \subseteq PShv(Sm/S)$

which is the full subcategory of presheaves that are Nisnevich sheaves and are $\mathbb{A}^1\text{-local}.$

(口)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Table of Contents

1 Introduction

2 Sheaves

3 \mathbb{A}^1 -Locality

4 Motivic Spaces

5 The Spheres

▲ 『□ ▶

< □ ▶

∃ ► < **∃** ►

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Ð,

Model cat requires bicompleteness. Small obj- argument muscell colimit

Problem 1

David Zhu

The category Sm/S is not cocomplete.

<ロト < 圖 ト < 필 ト < 필 ト - 三

 \mathcal{A}

We consider the category of **presheaves**, denoted by

 $\operatorname{PShv}(Sm/S)$

This is the functor category consisting of objects

 $\mathcal{F}: (Sm/S)^{op} \rightarrow Set$

For the moment, we can think presheaf of sets, although we will move to presheaf of simplicial sets later on.

<! ■ > = =

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Fact 1

Sm/S embeds fully faithfully in PShv(Sm/S).

This is via the Yoneda embedding.

$$\chi \mapsto h_{\chi} \qquad h_{\chi} := Hom(-,\chi)$$

Fact 2

PShv(Sm/S) is bicomplete, and the (co)limits are computed pointwise.

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

 \triangleleft \square \blacktriangleright

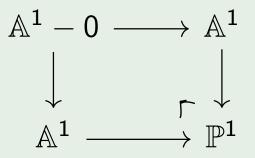
Ξ

Problem 3

Yoneda embedding does not preserve existing colimits.

Example

We have the following pushout square in Sm/k:



But the represented presheaves do NOT form a pushout in PShv(Sm/S).

< □ ▶ < ▶

토 🕨 🔺 토 🕨

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

Embedding into the presheaf category loses some "geometry". We would like to preserve some colimits, like the pushout square in the previous example.

Slogan

A Grothendieck topology specifies a class of colimits we want to preserve, and sheafification with respect to the topology is the universal way to do it.

< ∃ >

Suppose we have a covering $\{U_i \to X\}_{i \in I}$, this gives rise to a colimit

$$\coprod_{ij} U_{ij} \rightrightarrows \coprod_k U_k \to X$$

and a sheaf F will still "recognize" this colimit:

$$\operatorname{PShv}(X,F) \to \operatorname{PShv}(\coprod_k U_k,F) \rightrightarrows \operatorname{PShv}(\coprod_i U_{ij},F) \not\sim$$

Int to

is equivalent to

$$F(X) \to \coprod_{k} F(U_k) \rightrightarrows \coprod_{ij} F(U_{ij}) \quad \text{sheaf condition}$$

< □ ▶

being a colimit.

< ∃ >

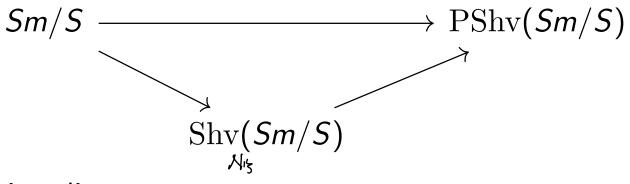
 $\mathcal{O} \mathcal{O} \mathcal{O}$

3

Fact

A Grothendieck topology is called **subcanonical** if all represented presheaves are sheaves. Zariski, Étale, Nisnevich topology are all subcanonical.

In particular, the Yoneda embedding factors through sheaves



and the following diagram

is a pushout of sheaves in all three topologies above,

David Zhu

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Remark: étale could be used for non-smooth Sch h-topology Voevalsky Nisnevich topology is the standard choice for motivic homotopy theory.

Theorem (Morel-Voevodsky Purity)

Suppose $Y \rightarrow X$ is a closed immersion in Sm/S. Then, there is a motivic equivalence

 $\frac{X}{X_{\frac{4}{7}} Y} \cong Th_Y(N_{Y/X})$

Theorem

Algebraic K-theory is a Nisnevich Sheaf, but not étale. (

(Thomas - Trobaugh

These are the two serious reasons why we need Nisnevich instead of other topologies.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ ��

How do we associate a (pre)sheaf a homotopy type?

	Zhu
DVID	/hu
aviu	LIIU

E.

590

16 / 47

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

 \blacksquare

How do we associate a (pre)sheaf a homotopy type?

The category **Set** is cocomplete, so taking the functor category into **Set** is the universal cocompletion; we know how to do homotopy theory with **sSet**, so we should try taking the category of presheaves of simplicial sets.

Note: presheaf of sSet = supplicial object in Psh

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

16 / 47

<ロト < 同ト < 巨ト < 巨ト = 巨

How do we associate a (pre)sheaf a homotopy type?

The category **Set** is cocomplete, so taking the functor category into **Set** is the universal cocompletion; we know how to do homotopy theory with **sSet**, so we should try taking the category of presheaves of simplicial sets.

From now on, the category PShv(Sm/S) will be the $(\infty$ -) category of simplicial presheaves over Sm/S.

 $\checkmark Q (\sim$

Model categorically: There is a projective model structure on PShv(Sm/S), with weak equivalence and fibration section-wise weak equivalence/fibration of simplicial sets. The fibrant objects are presheaves valued in Kan complexes.

▲ 글 ▶

Model categorically: There is a projective model structure on PShv(Sm/S), with weak equivalence and fibration section-wise weak equivalence/fibration of simplicial sets. The fibrant objects are presheaves valued in Kan complexes.

∞ -categorically: PShv(Sm/S) is the ∞ -category

$$\operatorname{PShv}(Sm/S) := \operatorname{Fun}((Sm/S)^{op}, Spc)$$

where we view Sm/S as the trivial ∞ -category by taking the nerve, and Spc is the ∞ -category of spaces. $Spc := \mathcal{N}(\mathcal{K}_{an})$

イロト イ押ト イミト イミト 三日

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Since we have presheaves valued in ∞ -categories, we need more coherence condition for the descent data. For the rest of the discussion, we will fix the Nisnevich topology on Sm/S.

Definition

Given a cover $U := \{U_i \to X\}$, the **Cech Nerve** NU is the simplicial object $\dots U \times_X U \times_X U \rightrightarrows U \times_X U \rightarrow U$

Applying a presheaf $F \in PShv(Sm/S)$ to the Cech nerve gives us a cosimplicial object F(NU).

$$U \times X \cdots \times U = disjoint union of all n-anyfiber product U; over$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Definition

A presheaf F is a **Nisnevich sheaf** if for every Nisnevich cover U, the induced map

 $F(X) \rightarrow lim_{\Delta}F(NU)$

is an equivalence.

< ∃ >

=

< □ ▶

Ξ

 $\mathcal{O} \mathcal{O} \mathcal{O}$

Definition

A presheaf F is a **Nisnevich sheaf** if for every Nisnevich cover U, the induced map

 $F(X) \rightarrow lim_{\Delta}F(NU)$

is an equivalence.

Remark

We are taking the ∞ -categorical limit here. If we were to use model categorical construction, we have to replace covers with **hypercovers** so that the Nisnevich sheaves will become the fibrant objects.

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶ →

1

Time to break out your Higher Topos Theory: Let $\underbrace{\operatorname{Shv}_{\tau}(\mathcal{C})}_{\tau = f_{V_{1}}}$ be the ∞ -category of τ -sheaf over some site \mathcal{C} .

Theorem

There exists a left exact localization functor

$$\mathcal{L}_{\tau} : \mathcal{P}Shv_{\tau}(\mathcal{C}) \to \mathcal{P}Shv(\mathcal{C})$$

left adjoint to the inclusion functor.

< ∃ >

Examples

Example (Representables)

For $X \in Sm/S$, the represented presheaf

$$h_X := Hom(-, X)$$

of 0-dimensional simplicial sets. It is a Nisnevich sheaf since all higher coherence are automatic, and the Nisnevich topology is subcanonical.

Example (Constant Sheaves)

Let $Y \in Spc$ be fixed. Then the **constant sheaf** associated to Y is the sheafification of the constant presheaf valued at Y.

Theorem (Thomason-Trobaugh)

Algebraic K-theory is a Nisnevich sheaf.

▲ 글 ▶

▲□▶ ▲□▶ ▲三▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

E

We have a simple criterion to check when a presheaf is a Nisnevich sheaf. A pullback diagram Grotherdieck cd-structure

$$\begin{array}{cccc} & & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & &$$

is called a **Nisnevich square** if *i* is an open immersion, *p* is étale, and *p* restricts to a isomorphism $p^{-1}(X - U) \rightarrow X - U$. If we reduced scheme structures

Theorem

A presheaf F is a Nisnevich sheaf iff it satisfies the following critera

•
$$F(\emptyset) = *$$

2 *F* sends every Nisnevich distinguished square to a homotopy pullback.

<ロト < 同ト < 巨ト < 巨ト = 巨

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Table of Contents

1 Introduction

2 Sheaves

4 Motivic Spaces

5 The Spheres

∃ ► < **∃** ►

< 47 ▶

.

< □ ▶

5900

E

Quote

All our constructions are based on the intuitive feeling that ... there should exist a homotopy theory of algebraic varieties where the affine line plays the role of the unit interval.

-Morel, Voevodsky

∃ →

3

Definition

A presheaf $\mathcal{F} \in PShv(Sm/S)$ is called \mathbb{A}^1 -invariant (or \mathbb{A}^1 -local) if the canonical projection map

$$X imes \mathbb{A}^1 o X$$

induces an equivalence

$$F(X) o F(X imes \mathbb{A}^1)$$

for all *S*-scheme *X*.

- ₹ € ▶

B N

< □ ▶

Ξ

Examples

Theorem (Quillen-Suslin)

Let X = Spec(R) where R is a regular k-algebra. Then

$$Vect(X) \rightarrow Vect(X \times \mathbb{A}^1)$$

is an equivalence.

Theorem (Algebraic K-theory)

Let X be in Sm/S. Then,

Fundamental Theorem of K-theorem
$$K(X) o K(X imes \mathbb{A}^1)$$

is an equivalence.

The above theorem does not hold when X is singular, which is the reason why we restrict to smooth schemes. <ロト < 同ト < 国ト < 国ト = 三三

David Zhu

Unstable Motivic Homotopy

June 25, 2025

 \mathcal{A}

Easy Exercise

The presheaf represented by \mathbb{A}^1 is not \mathbb{A}^1 -local.

A¹ represents global section

$$A^{1}(A^{1}) \rightarrow A^{1}(A^{1}XA)$$

not an equiphence

э.

< □ ▶

< 47 ▶

< ∃ >

Ð,

 \mathcal{A}

Since we want to study study schemes in Sm/S, we need a localization functor

$$\underbrace{L_{\mathbb{A}}}: \operatorname{PShv}(Sm/S) \to \operatorname{PShv}_{\mathbb{A}^1}(Sm/S)$$

Note that the condition of \mathbb{A}^{1} -invariance is equivalent to being local to the set of maps Noether land finite type $S := \{X \times \mathbb{A}^{1} \to X : X \in Sm/S\}$ is an equiv. F)' $K = \{X \times \mathbb{A}^{1} \to X : X \in Sm/S\}$ is an equiv. F)'

Theorem (HTT 5.5.4.15)

If C is presentable and $S \subset MorC$ is small, then the inclusion of the full subcategory of S-local objects admits a left adjoint.

In particular, the A¹-localization functor exists. 1. preserve finite limits 2. preserves colimits 2. preserves colimits

We can give an explicit formula for \mathbb{A}^1 -localization:

Definition

The algebraic n-simplex is the following scheme

$$\begin{array}{ll} \textbf{simplex} \text{ is the following scheme} & & & & & & & & \\ \Delta^n := Spec(\mathbb{Z}[t_1,...,t_{n+1}]/(\sum t_i-1)) & & & & & & & & \\ \Delta^n := Spec(\mathbb{Z}[t_1,...,t_{n+1}]/(\sum t_i-1)) & & & & & & & & \\ \end{array}$$

Definition

The singular chains construction

$$Sing: \mathrm{PShv}(Sm/S) o \mathrm{PShv}(Sm/S)$$

is defined by

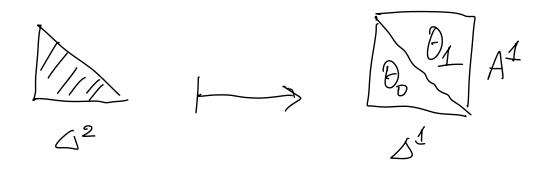
$$Sing(F)(X) := colim_{\Delta^{op}}(F(X \times \Delta^n))$$

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

< □ ▶

Ð.

Sing functor



Proposition

Sing(F) is \mathbb{A}^1 -local for any presheaf F. MV, MVW

Corollary

Sing(F) is equivalent to the localization functor $L_{\mathbb{A}^1}$.

Outline: lemma
$$F(X) \rightarrow F(X \times A^{d})$$
 is an equilabeline
if $i \circ i \downarrow : F(X \times A^{d}) \rightarrow F(X)$ are homotopic
produced a map $D_{K} : \varDelta^{n+1} \rightarrow \varDelta^{n} \times A^{d}$ produced desided
 $V_{i} \mapsto \overset{V_{i} \times 3 \circ 3}{\underset{V_{i} \times 3 \circ 3}}}}} = 1 = 2000$
David Zhu Unstable Motivic Homotopy June 25, 2025 30/47

Unstable Motivic Homotopy

Problem

Nisnevich Sheafification may break \mathbb{A}^1 -locality; \mathbb{A}^1 -localizating a Nisnevich sheaf may break the sheaf condition.

MV 3.2.7

< ∃ >

< □ >

Ξ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Table of Contents

1 Introduction

2 Sheaves

3 \mathbb{A}^1 -Locality

4 Motivic Spaces

5 The Spheres

∃ ► < **∃** ►

< 47 ▶

.

< □ ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

E

The ∞ -category of **motivic spaces** Spc(S) is

$$Spc(S) = \operatorname{Shv}_{\operatorname{Nis}}(Sm/S) \cap \operatorname{PShv}_{\mathbb{A}^1}(Sm/S) \subseteq \operatorname{PShv}(Sm/S)$$

which is the full subcategory of presheaves that are Nisnevich sheaves and are \mathbb{A}^1 -local.

< ∃ >

< □ ▶

Ð.

Gen represent units
$$Gm(X) = \Gamma(X, \partial_X)$$

 $Rit] \longrightarrow R^*$
equivalence

< □

Example

The representable \mathbb{G}_m is \mathbb{A}^1 -invariant, since it represents units. Thus, it is a motivic space.

Theorem

Algebraic K-theory is a motivic space.

< ∃ >

E

The motivic localization functor

$$L_{mot}$$
 : PShv $(Sm/S) \rightarrow Spc(S)$

is defined to be the colimit in the presheaf category

$$L_{mot}: colim(L_{Nis} \rightarrow L_{\mathbb{A}^1}L_{Nis} \rightarrow L_{Nis}L_{\mathbb{A}^1}L_{Nis}) \rightarrow ...$$

To see that this indeed lands in Spc(S), we can look at two cofinal sequences in the colimit. $\neg h \left(\left(A^{\perp} A_{NS} \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \left(\left(A^{\perp} A_{NS} \right)^{3} \rightarrow \cdots \right) \right) \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right)$ $colim \left(A_{NS} \rightarrow A^{\perp} - \left(\neg a \right) \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right)$ $colim \left(A_{NS} \rightarrow A^{\perp} - \left(\neg a \right) \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right)$ $colim \left(A_{NS} \rightarrow A^{\perp} - \left(\neg a \right) \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right)$ $colim \left(A_{NS} \rightarrow A^{\perp} - \left(\neg a \right) \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right)$ $a \rightarrow A^{\perp} - \left(\neg a \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$ $\Rightarrow A^{\perp} - \left(\neg a \right) \rightarrow \left(A^{\perp} A_{NS} \right)^{2} \rightarrow \cdots \right)$

We say that $f : F \to G$ in PShv(Sm/S) is a **motivic equivalence** if it becomes an equivalence after motivic localization.

Example

The map to the terminal object

$$\mathbb{A}^n_S \to S$$

is a motivic equivalence for all $n \ge 1$.

< ⊒ >

=

Proposition

For any presheaf $F \in PShv(Sm/S)$, the projection map

 $F \times \mathbb{A}^n_{S} \to F$

is a motivic equivalence.

For representables, also by definition. For representables, also by definition. Fact: all presheaves are colimits of representables $F \times A^n \rightarrow F$ $F = 1 \dots h$ $coll(h_x) \times A^n$ an-rat fact: collmit distructe over product in our case collm(hxxA¹)

< □ ▶ < ⊡ ▶ <

-

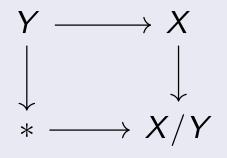
A motivic space X is **pointed** if it is equipped with a map from the terminal object S. We denoted the category of pointed motivic spaces as $Spc_*(S)$, with zero object the basepoint *.

There is the usual adjunction

$$Spc(S) \leftrightarrows Spc_*(S)$$

by adjoining a distinct basepoint and forgetting the basepoint.

The **cofiber** of a map between two pointed motivic spaces $f : Y \rightarrow X$, denoted by X/Y, is the pushout



Definition

The **smash product** of two motivic spaces X, Y is defined to be the cofiber of the canonical map $X \vee Y \rightarrow X \times Y$

$$X \land Y := X \times Y / X \lor Y$$

<ロト < 同ト < 巨ト < 巨ト -

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

3

Table of Contents

1 Introduction

2 Sheaves

3 \mathbb{A}^1 -Locality

4 Motivic Spaces

5 The Spheres

∃ ► < ∃ ►</p>

< 4 →

.

< □ ▶

 $\mathcal{O}\mathcal{Q}(\mathcal{P})$

Ð,

Since we are mixing schemes with simplicial sets, there are two types of spheres in motivic homotopy theory.

Definition

The multiplicative group \mathbb{G}_m pointed at 1 is called the **Tate sphere**, denoted by $S^{1,1}$. $A^{1-3\circ}$ Topological $A^{1}_{C} - \overline{2}\circ \overline{2} \subset \overline{1} - \overline{2}\circ \overline{2} \subseteq \overline{2} \subset \overline{2} \subseteq S^{1-1}$

Definition

The constant presheaf at the simplicial circle $S^1 := \Delta^1 / \mathcal{Q}$ is the simplicial sphere, denoted by $S^{1,0}$.

$$S^{1,1}A S^{1,0} =: S^{2,0}$$

< □ > < □ > < □ > < □ > < □ > .

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Smash Product

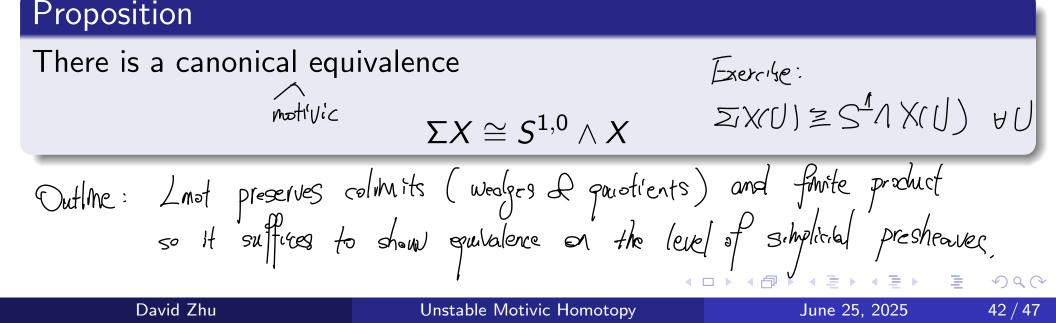
Definition

The suspension of a pointed motivic space X is defined to be the pushout Topologically

 $X \longrightarrow *$

 $\rightarrow \Sigma X$

 $\downarrow S^{1}\Lambda X \cong \Sigma X$



Examples

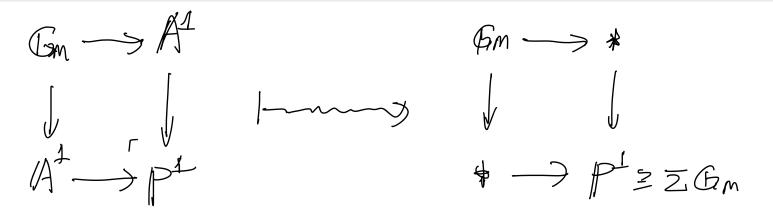
The (Asok, Doran, Fasel) 8°, 's not notivile equil to a smooth scheme for a > 26 There a few explicit descriptions of smashing the two kinds of motivic

spheres together, but we do have a class of specific examples

Example

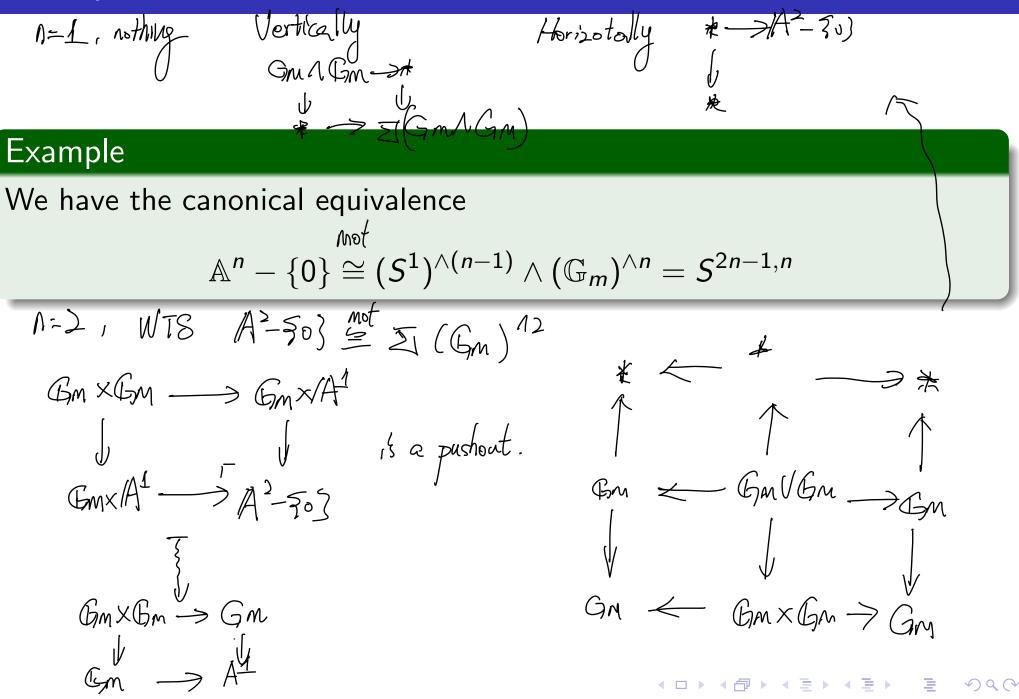
We have the canonical equivalence

$$\Sigma \mathbb{G}_m \cong \mathbb{P}^1$$



· < @ > < 로 > < 로 > · · 로

Examples



David Zhu

Unstable Motivic Homotopy

June 25, 2025

We can now define the motivic analog of homotopy groups, which are now Nisnevich sheaves.

Definition

The \mathbb{A}^1 -homotopy sheaf of a pointed motivic space (X, x), denoted by $\pi_n^{\mathbb{A}^1}(X, x)$, is the Nisnevich sheafification of the presheaf

 $U \mapsto [\Sigma^n U_+, X]_{Spc(S)_*}$

$$[X,Y]_{C} = \pi_{0} Maps_{e}(X,Y)$$

< ∃ >

The \mathbb{A}^1 -homotopy sheaf can be computed in the following way:

Definition

Let (X, x) be a pointed Nisnevich sheaf. Let $\pi_n^{Nis}(X, x)$ be the **Nisnevich** homotopy sheaf, defined to be the Nisnevich sheafification of the presheaf

 $U\mapsto \pi_n(X(U),x)$

$$\overline{M}_{n}(|X(U)|, x)$$

Proposition

If (X, x) is a motivic space, then the Nisnevich homotopy sheaf and \mathbb{A}^1 -homotopy sheaf of (X, x) agree.

$$\pi_n^{\mathrm{Nis}}(X,x) \cong \pi_n^{\mathbb{A}^1}(X,x)$$

46 / 47

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ →

Theorem (Whitehead's Theorem)

Let $f : F \to G$ be a map in PShv(Sm/S). Then, f is a motivic equivalence iff

$$\pi_n^{\mathbb{A}^1}(f):\pi_n^{\mathbb{A}^1}(F,x)\to\pi_n^{\mathbb{A}^1}(G,f(x))$$

is an equivalence for all $n \ge 0$ and all basepoint $x \in F$.

Follows from Whiteheod's Theorem
$$\pi N K(X, X)$$

 $+ equivalence \pi^{A'} \geq \pi_n N K$

글 🕨 🖌 글 🕨

< □ ▶

Ξ

More to come:

1. Check motivic equil on affines 2. Fibre sequence + LES of homotopy sheaves 3. Thom space & purity 4. Eilenberg-Marlane spaces (motivir analog) representability.