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Goal

Design a homotopy theory for schemes.

We will be working with Sm/S , the category of smooth schemes of finite
type over S , a Noetherian scheme of finite dimension.
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Question

What do we mean by a ”homotopy theory”?

A ”homotopy theory” could be any one of the two structures

1 A simplicial model category (Morel-Voevodsky)

2 An →-category (What cool kids do these days)
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Spoilers

There are multiple ways to set up motivic spaces (model categorical and
→-categorical), but all of them produce the same homotopy theory. We
will use the →-categorical version following [1].

Definition

The →-category of motivic spaces Spc(S) is

Spc(S) = ShvNis(Sm/S) ↑ PShvA1(Sm/S) ↓ PShv(Sm/S)

which is the fullsubcategory of presheaves that are Nisnevich sheaves and
are A1-local.
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Setups

Problem 1

The category Sm/S is not cocomplete.

In particular, we do not have all pushouts, so we cannot always glue
schemes along arbitrary maps, or form quotients, unlike in the category of
spaces.
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Preliminary Solution

We consider the category of presheaves, denoted by

PShv(Sm/S)

This is the functor category consisting of objects

F : (Sm/S)op ↔ Set

For the moment, we can think presheaf of sets, although we will move to
presheaf of simplicial sets later on.
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Fact 1

Sm/S embeds fully faithfully in PShv(Sm/S).

This is via the Yoneda embedding.

Fact 2

PShv(Sm/S) is bicomplete, and the (co)limits are computed pointwise.
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Problem 3

Yoneda embedding does not preserve existing colimits.

Example

We have the following pushout square in Sm/k :

A1 ↗ 0 A1

A1 P1

But the represented presheaves do NOT form a pushout in PShv(Sm/S).

Hom(↗,A1 ↗ 0) Hom(↗,A1)

Hom(↗,A1) Hom(↗,P1)
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Sheafification

Embedding into the presheaf category loses some “geometry”. We would
like to preserve some colimits, like the pushout square in the previous
example.

Slogan

A Grothendieck topology specifies a class of colimits we want to preserve,
and sheafification with respect to the topology is the universal way to do it.
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Suppose we have a covering {Ui ↔ X}i→I , this gives rise to a colimit

∐
ij Uij ↭

∐
k Uk ↔ X

and a sheaf F will still “recognize” this colimit:

PShv(X ,F ) ↔ PShv(
∐

k

Uk ,F ) ↭ PShv(
∐

ij

Uij ,F )

is equivalent to
F (X ) ↔

∐

k

F (Uk) ↭
∐

ij

F (Uij)

being a colimit.
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Fact

A Grothendieck topology is called subcanonical if all represented
presheaves are sheaves. Zariski, Étale, Nisnevich topology are all
subcanonical.

In particular, the Yoneda embedding factors through sheaves

Sm/S PShv(Sm/S)

Shv(Sm/S)

and the following diagram

Hom(↗,A1 ↗ 0) Hom(↗,A1)

Hom(↗,A1) Hom(↗,P1)

is a pushout of sheaves in all three topologies above.
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Why Nisnevich

Nisnevich topology is the standard choice for motivic homotopy theory.

Theorem (Morel-Voevodsky Purity)

Suppose Y ↔ X is a closed immersion in Sm/S . Then, there is a motivic

equivalence

X

X/Y
↘= ThY (NY /X )

Theorem

Algebraic K-theory is a Nisnevich Sheaf, but not étale.

These are the two serious reasons why we need Nisnevich instead of other
topologies.
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Sheaves with Homotopy Type

Question

How do we associate a (pre)sheaf a homotopy type?

The category Set is cocomplete, so taking the functor category into Set is
theuniversal cocompletion; we know how to do homotopy theory with
sSet, so we should try taking the category of presheaves of simplicial sets.

From now on, the category PShv(Sm/S) will be the (→-) category of
simplicial presheaves over Sm/S .
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Simplicial Presheaves

Model categorically: There is a projective model structure on
PShv(Sm/S), with weak equivalence and fibration section-wise weak
equivalence/fibration of simplicial sets. The fibrant objects are presheaves
valued in Kan complexes.

→-categorically: PShv(Sm/S) is the →-category

PShv(Sm/S) := Fun((Sm/S)op, Spc)

where we view Sm/S as the trivial →-category by taking the nerve, and
Spc is the →-category of spaces.
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→-Sheaves

Since we have presheaves valued in →-categories, we need more coherence
condition for the descent data. For the rest of the discussion, we will fix
the Nisnevich topology on Sm/S .

Definition

Given a cover U := {Ui ↔ X}, the Cech Nerve NU is the simplicial
object

...U ≃X U ≃X U ↭ U ≃X U ↔ U

Applying a presheaf F ⇐ PShv(Sm/S) to the Cech nerve gives us a
cosimplicial object F (NU).
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Nisnevich Sheaf

Definition

A presheaf F is a Nisnevich sheaf if for every Nisnevich cover U, the
induced map

F (X ) ↔ lim!F (NU)

is an equivalence.

Remark

We are taking the →-categorical limit here. If we were to use model
categorical construction, we have to replace covers with hypercovers so
that the Nisnevich sheaves will become the fibrant objects.
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Sheafification via Localization

Time to break out your Higher Topos Theory: Let Shvω (C) be the
→-category of ω -sheaf over some site C.

Theorem

There exists a left exact localization functor

Lω : Shvω (C) ↔ PShv(C)

left adjoint to the inclusion functor.
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Examples

Example (Representables)

For X ⇐ Sm/S , the represented presheaf

hX := Hom(↗,X )

of 0-dimensional simplicial sets. It is a Nisnevich sheaf since all higher
coherence are automatic, and the Nisnevich topology is subcanonical.

Example (Constant Sheaves)

Let Y ⇐ Spc be fixed. Then the constant sheaf associated to Y is the
sheafification of the constant presheaf valued at Y .

Theorem (Thomason-Trobaugh)

Algebraic K -theory is a Nisnevich sheaf.
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Simplification

We have a simple criterion to check when a presheaf is a Nisnevich sheaf.
A pullback diagram

U ≃X V V

U X

p

i

is called a Nisnevich square if i is an open immersion, p is étale, and p

restricts to a isomorphism p
↑1(X ↗ U) ↔ X ↗ U.

Theorem

A presheaf F is a Nisnevich sheaf i! it satisfies the following critera

1 F (⇒) = ⇑
2 F sends every Nisnevich distinguished square to a homotopy pullback.
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A1
-Locality

Quote

All our constructions are based on the intuitive feeling that ... there should
exist a homotopy theory of algebraic varieties where the a!ne line plays
the role of the unit interval.

-Morel, Voevodsky
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A1
-Locality

Definition

A presheaf F ⇐ PShv(Sm/S) is called A1-invariant (or A1-local ) if the
canonical projection map

X ≃ A1 ↔ X

induces an equivalence

F (X ) ↔ F (X ≃ A1)

for all S-scheme X .
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Examples

Theorem (Quillen-Suslin)

Let X = Spec(R) where R is a regular k-algebra. Then

Vect(X ) ↔ Vect(X ≃ A1)

is an equivalence.

Theorem (Algebraic K-theory)

Let X be in Sm/S . Then,

K (X ) ↔ K (X ≃ A1)

is an equivalence.

The above theorem does not hold when X is singular, which is the reason
why we restrict to smooth schemes.
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Non-example

Easy Exercise

The presheaf represented by A1 is not A1-local.
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A1
-Localization

Since we want to study study schemes in Sm/S , we need a localization
functor

LA1 : PShv(Sm/S) ↔ PShvA1(Sm/S)

Note that the condition of A1-invariance is equivalent to being local to the
set of maps

S := {X ≃ A1 ↔ X : X ⇐ Sm/S}

Theorem (HTT 5.5.4.15)

If C is presentable and S ⇓ MorC is small, then the inclusion of the full

subcategory of S-local objects admits a left adjoint.

In particular, the A1-localization functor exists.
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We can give an explicit formula for A1-localization:

Definition

The algebraic n-simplex is the following scheme

”n := Spec(Z[t1, ..., tn+1]/(
∑

ti ↗ 1))

Definition

The singular chains construction

Sing : PShv(Sm/S) ↔ PShv(Sm/S)

is defined by
Sing(F )(X ) := colim!op(F (X ≃”n))

David Zhu Unstable Motivic Homotopy June 25, 2025 29 / 47



Sing functor

Proposition

Sing(F ) is A1-local for any presheaf F .

Corollary

Sing(F ) is equivalent to the localization functor LA1 .
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Problem

Nisnevich Sheafification may break A1-locality; A1-localizating a Nisnevich
sheaf may break the sheaf condition.

MV 3.2.7
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Motivic Spaces

Definition

The →-category of motivic spaces Spc(S) is

Spc(S) = ShvNis(Sm/S) ↑ PShvA1(Sm/S) ↓ PShv(Sm/S)

which is the full subcategory of presheaves that are Nisnevich sheaves and
are A1-local.
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Examples

Example

The representable Gm is A1-invariant, since it represents units. Thus, it is
a motivic space.

Theorem

Algebraic K -theory is a motivic space.
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Definition

The motivic localization functor

Lmot : PShv(Sm/S) ↔ Spc(S)

is defined to be the colimit in the presheaf category

Lmot : colim(LNis ↔ LA1LNis ↔ LNisLA1LNis) ↔ ...

To see that this indeed lands in Spc(S), we can look at two cofinal
sequences in the colimit.
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Definition

We say that f : F ↔ G in PShv(Sm/S) is a motivic equivalence if it
becomes an equivalence after motivic localization.

Example

The map to the terminal object

An
S ↔ S

is a motivic equivalence for all n ⇔ 1.
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More Examples

Proposition

For any presheaf F ⇐ PShv(Sm/S), the projection map

F ≃ An
S ↔ F

is a motivic equivalence.
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Pointed Motivic Spaces

Definition

A motivic space X is pointed if it is equipped with a map from the
terminal object S . We denoted the category of pointed motivic spaces as
Spc↓(S), with zero object the basepoint ⇑.

There is the usual adjunction

Spc(S) ↫ Spc↓(S)

by adjoining a distinct basepoint and forgetting the basepoint.
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Constructions

Definition

The cofiber of a map between two pointed motivic spaces f : Y ↔ X ,
denoted by X/Y , is the pushout

Y X

⇑ X/Y

Definition

The smash product of two motivic spaces X ,Y is defined to be the
cofiber of the canonical map X ↖ Y ↔ X ≃ Y

X ↙ Y := X ≃ Y /X ↖ Y
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The Spheres

Since we are mixing schemes with simplicial sets, there are two types of
spheres in motivic homotopy theory.

Definition

The multiplicative group Gm pointed at 1 is called the Tate sphere,
denoted by S

1,1.

Definition

The constant presheaf at the simplicial circle S
1 := ”1/”0 is the

simplicial sphere, denoted by S
1,0.
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Smash Product

Definition

The suspension of a pointed motivic space X is defined to be the pushout

X ⇑

⇑ #X

Proposition

There is a canonical equivalence

#X ↘= S
1,0 ↙ X
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Examples

There a few explicit descriptions of smashing the two kinds of motivic
spheres together, but we do have a class of specific examples

Example

We have the canonical equivalence

#Gm
↘= P1
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Examples

Example

We have the canonical equivalence

An ↗ {0} ↘= (S1)↔(n↑1) ↙ (Gm)
↔n = S

2n↑1,n
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A1
-Homotopy Sheaves

We can now define the motivic analog of homotopy groups, which are now
Nisnevich sheaves.

Definition

The A1-homotopy sheaf of a pointed motivic space (X , x), denoted by
εA1

n (X , x), is the Nisnevich sheafification of the presheaf

U ∝↔ [#n
U+,X ]Spc(S)→
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The A1-homotopy sheaf can be computed in the following way:

Definition

Let (X , x) be a pointed Nisnevich sheaf. Let εNis
n (X , x) be the Nisnevich

homotopy sheaf, defined to be the Nisnevich sheafification of the presheaf

U ∝↔ εn(X (U), x)

Proposition

If (X , x) is a motivic space, then the Nisnevich homotopy sheaf and
A1-homotopy sheaf of (X , x) agree.

εNis
n (X , x) ↘= εA1

n (X , x)
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Whitehead’s Theorem

Theorem (Whitehead’s Theorem)

Let f : F ↔ G be a map in PShv(Sm/S). Then, f is a motivic

equivalence i!

εA1

n (f ) : εA1

n (F , x) ↔ εA1

n (G , f (x))

is an equivalence for all n ⇔ 0 and all basepoint x ⇐ F .
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